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Abstract. We adopt the Lorentz gauge to derive the non-local two-gluon vacuum expectation value (VEV)
with translational invariance. By means of the obtained non-local two-gluon VEV, the leading nonper-
turbative QCD corrections to one gluon exchange quark-quark, quark-antiquark and qq̄ pair-excitation
potentials are given by employing non-vanishing vacuum condensates of quarks and gluons to modify the
free gluon propagator. The linear, cubic and Yukawa-type terms in quark-quark potential appear automat-
ically. In the qq̄ pair-excitation potential with ωq = 0, the linear, square and cubic terms arise from the
nonzero quark and gluon condensates.

1 Introduction

Recently, a great progress has been made in our under-
standing of strong interaction in the framework of quan-
tum chromodynamics(QCD): the quark potential model
based on one-gluon exchange approximation can repro-
duce the baryon spectrum and the static properties of
hadrons [1] correctly, especially the positive parity states;
including the qq̄ creation and annihilation terms in the
one-gluon-exchange approximation, it can give a descrip-
tion of meson-nucleon interactions [2]. It is well under-
stood that the one-gluon exchange can generate only the
short-range part of the baryon-baryon interaction since
the one-gluon exchange potential is the nonrelativistic re-
duction of the operator derived in the perturbative QCD
scheme. It is clear that, to reflect medium- and long-range
QCD, some nonperturbative effects induced by the com-
plicated structure of QCD vacuum should be taken into
account. This kind of nonperturbative effect on the quark
interaction has become one of the interesting topics [3–
5] recently. It was firstly suggested in QCD sum rules [6]
that these nonperturbative effects can be phenomenologi-
cally considered by introducing nonvanishing condensates
of quarks and gluons into the Green function of QCD by
means of the operator-product expansion(OPE) [7]. They
started from short distance, where the quark-gluon dy-
namics is essentially perturbative, and extrapolated the
dynamics to larger distance by introducing non-pertur-
bative effects step by step [8]. The application of the the-
ory in studying hadronic properties indicates that one can
trust the validity of this approach. Inspired by the success
of the QCD sum rules, we introduced the non-perturbative
QCD effects into the traditional potential model [9] and

investigated the possible effects of quark and gluon con-
densates in heavy quarkonium spectra [10]. A deeper un-
derstanding of the hadronic structure and a underlying
mechanism which determines how quarks are bound into
hadrons have been obtained.

In the above non-perturbative consideration, the non-
local two-quark and two-gluon vacuum expectation val-
ues (VEVs) are essential in deriving an effective poten-
tial. To evaluate the non-local two-gluon VEV, one usu-
ally adopted the fixed-point gauge of the vacuum gluon
field [11]. However, the fixed-point gauge violates transla-
tional invariance of the non-local two-gluon VEV. Such a
problem becomes especially prominent in the evaluation
of the gluon condensate contributions to the three-point
non-perturbative vertex [12]. Furthermore, there exist dif-
ferences in the result of Shen et al. [9] and that of Larsson
[13] in the calculation of the condensate modified gluon
propagator which is included in a proper scattering am-
plitude for making the unitary expansion. The result of
Shen et al. [9] was obtained in the standard way, in which
the normal product operators such as qq̄(0) and G2(0)
have non-vanishing matrix elements in the physical vac-
uum, — i.e., 〈0|qq̄|0〉 and 〈0|G2|0〉 are left as parameters
to describe non-perturbative effects. The modified gluon
propagator in momentum space can be written as [9]

Gµν =
−i
q2

(gµν − qµqν
q2

)F (q2) (1)

where

F (q2) = 1 +
1
3
g2

∑
β=u,d,s

mβ〈0|qβ q̄β |0〉
q2(q2 −m2

β)
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+
9
32
g2〈0|G2|0〉 1

q4
. (2)

On the other hand, Larsson’s result [13] reads

Dµν =


1 −

∑
β

g2mβ〈0|qβ q̄β |0〉
q2(q2 +m2

β)
+

5g2〈0|G2|0〉
288q4




−1

× (−i)
q2

(δµν − qµqν
q2

), (3)

which was obtained by comparing the (2n + 1)-point
Green’s function (n is the number of external legs of q or
Bµ) and the n-point Green’s function with the insertion of
the operators qq̄(0) or G2(0) (these Green’s functions are
with respect to the physical vacuum). Expanding the first
piece in (3) with respect to αs, one can find that not only
the coefficients at the lowest order of αs are different from
those in (2), but also the sign of the coefficient associated
with the gluon condensate is different from that in (2).

The discrepancy between (2) by Shen and (3) by Lars-
son comes from the difference in the gauge conditions that
they worked with. When all the gauge invariant set of dia-
grams (in this case, gluon propagator, quark-gluon vertex
and quark propagator corrections) are summed up, the
result is unique and should be independent of the gauge
conditions.

Deriving the condensate corrections to QCD inspired
quark potentials in Lorentz gauge with translational in-
variance is the main purpose of this paper. We first derive
the non-local two-gluon VEV with translational invari-
ance in Lorentz gauge. Then, using the obtained two-gluon
VEV, we extend the leading nonperturbative QCD correc-
tions to the perturbative one gluon exchange quark-quark
potential in [9], where the fixed-point gauge of the vacuum
gluon field was adopted, to include the qq̄ pair-annihilation
and qq̄ pair-excitation potentials by considering the con-
tributions of the quark and gluon condensates 〈q̄q〉 and
〈GG〉 to the gluon propagator. In addition, to get a bet-
ter description of corrections due to the quark condensate,
we keep the terms up to the next-to-leading-order in the
full coefficient of 〈q̄q〉 component of the nonperturbative
two-quark VEV [14], whereas only leading-order term was
used in [9].

In detail, we organize the paper as follows: after de-
riving the non-local two-gluon VEV with translational in-
variance in Lorentz gauge, we evaluate in Sect. 3 the non-
perturbative corrections to quark-quark potential by using
the two-gluon and two-quark VEV with translational in-
variance. In Sects. 4 and 5, we extend the nonperturbative
calculation to the one-gluon exchange potentials of the qq̄
pair-annihilation and qq̄ pair-excitation, respectively. In
the final section, we give a brief discussion and conclusion
with a few remarks on possible extensions of present work.

2 Non-local two-gluon VEV
with translational invariance

In this section, we derive the non-local two-gluon VEV
with translational invariance in Lorentz gauge.

In the fixed-point gauge,

xµB
µ
a (x) = 0, (4)

the non-local two-gluon VEV is [6,14]

〈0|Ba
µ(x)Bb

ν(y)|0〉 =
1
4
xρyσ〈0|Ga

ρµG
b
σν |0〉 + · · · · · ·

=
δab

48(N2
c − 1)

xρyσ(gρσgµν − gρνgσµ)

×〈0|G2|0〉 + · · · , (5)

where
〈0|G2|0〉 = 〈0|Ga

ρµG
ρµ
a |0〉. (6)

The expansion (5) violates the translational invariance
since the right hand side(RHS) of (5) is a function of xy
instead of (x− y).

In order to obtain the expansion of 〈0|Ba
µ(x)Bb

ν(y)|0〉
with translational invariance, we study the basic require-
ments for translational invariance. Assume that f(x) and
g(x) are arbitrary composite fields, the translational in-
variance means

〈0|f(x)g(y)|0〉 = 〈0|f(x− y)g(0)|0〉
= 〈0|f(0)g(y − x)|0〉 (7)

from which we get

〈0|∂ρf(0)g(0)|0〉 = −〈0|f(0)∂ρg(0)|0〉. (8)

For example, when f and g are gluon fields, then

〈0|∂ρB
a
µ(0)Bb

ν(0)|0〉 = −〈0|Ba
µ(0)∂ρB

b
ν(0)|0〉. (9)

On the other hand, according to the translational invari-
ance of 〈0|Ba

µ(x)Bb
ν(y)|0〉, we get

〈0|Ba
µ(x)Bb

ν(y)|0〉 = πab
µν(x− y)

=
∫
Πab

µν(k)e−i(x−y)·k d4k
(2π)4

(10)

with
Πab

µν(k) = π(k2)(gµν − kµkν

k2 )δab (11)

which follows from the Lorentz gauge condition

∂µBa
µ(x) = 0. (12)

Expanding the exponential term in (10), in consideration
of the fact that the terms with the odd powers of k vanish
after integrating over k, we have

〈0|Ba
µ(x)Bb

ν(y)|0〉 =
∫
π(k2)(gµν − kµkν

k2 )δab

×
[
1 +

1
2!

(−i(x− y) · k)2 + · · ·

+
1

(2n)!
(−i(x− y) · k)2n + · · ·

]

× d4k

(2π)4
(13)
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from which we obtain

〈0|∂ρB
a
µ(0)Bb

ν(0)|0〉 = 0 (14)

and
〈0|∂ρ∂σ∂λB

a
µ(0)Bb

ν(0)|0〉 = 0 (15)

and so on. Upon contraction of both sides of (15) with gρσ

we have
〈0|∂2∂λB

a
µ(0)Bb

ν(0)|0〉 = 0. (16)

Equations (14)–(16) embody the requirements for the
translational invariance of non-local two-gluon VEV. Ac-
cording to these requirements, the non-local two-gluon
VEV can be expressed as

〈0|Ba
µ(x)Bb

ν(y)|0〉 = 〈0|Ba
µ(0)Bb

ν(0)|0〉
− δab

2(N2
c − 1)

(x− y)ρ(x− y)σ

×〈0|∂ρB
d
µ(0)∂σB

d
ν(0)|0〉 + · · · · · · , (17)

where

〈0|Ba
µ(0)Bb

ν(0)|0〉 =
gµν

4
δab

(N2
c − 1)

〈0|Bd
ρ(0)Bρ

d(0)|0〉

=
gµν

4
δab

(N2
c − 1)

〈0|B2|0〉 (18)

and

1
2
〈0|∂ρB

a
µ(0)∂σB

a
ν (0)|0〉

=
[
Sgµνgρσ +

R

2
(gρνgσµ + gρµgνσ)

]
. (19)

Contracting (19) with gρσgµν and gρµgσν leads to

1
2
〈0|∂σBν

a(0)∂σB
a
ν (0)|0〉 = 16S + 4R (20)

and
1
2
〈0|∂µBa

µ(0)∂νBa
ν (0)|0〉 = 4S + 10R. (21)

respectively. According to the Lorentz gauge condition
(12), (21) means

R = −2
5
S. (22)

Furthermore, using the definition of the gluon field
strength and only keeping the contribution of the vacuum
intermediate state [15], one can easily find that

〈0|Ga
ρµ(0)Gb

σν(0)|0〉
=

[〈0|∂ρB
a
µ(0)∂σB

b
ν(0)|0〉 + 〈0|∂µB

a
ρ (0)∂νB

b
σ(0)|0〉]

− [〈0|∂µB
a
ρ (0)∂σB

b
ν(0)|0〉 + 〈0|∂ρB

a
µ(0)∂νB

b
σ(0)|0〉]

+
g2Nc

12(N2
c − 1)2

δab [gρσgµν − gµσgρν ] 〈0|B2|0〉2 (23)

which results in

S =
5〈0|G2|0〉

288
− 5Ncg

2

288(N2
c − 1)

〈0|B2|0〉2. (24)

By considering (22), (17) can also be rewritten as

〈0|Ba
µ(x)Bb

ν(y)|0〉 =
δab

(N2
c − 1)

gµν

4
〈0|B2|0〉

− δab

(N2
c − 1)

S
[
(x− y)2gµν

− 2
5
(x− y)µ(x− y)ν

]
+ · · · · · · (25)

with the translational invariance. Note that, on the RHS
of (25), beyond the second term, which has already been
used by Bagan et al. [16] with neglecting 〈0|B2|0〉2, we also
have the first term 〈0|B2|0〉 which should not be omitted
according to the value given in [15] or our following esti-
mate of its value. The anti-Fourier transformation for the
RHS of (25) reads

C(k) =
δabgµν〈0|B2|0〉

4(N2
c − 1)

δ4(k) +
δabS

(N2
c − 1)

[gµνgρσ

− 2
5
gµρgνσ

]
∂2

∂kρ∂kσ
δ4(k) + · · · · · · . (26)

In order to obtain a workable formula, the value of
〈0|B2|0〉 needs to be estimated. According to the scheme
suggested in [17], we can determine the value of 〈0|B2|0〉
with the phenomenological values for the vacuum conden-
sates 〈0|G2|0〉 and 〈0|qq̄|0〉 through the QCD equation of
motion

Dab
µ (B)Gνµ

b (B) = gq̄γνtaq (27)

with
Dab

µ (B) = δab∂µ − gfabcBc
µ. (28)

Multiplying (27) by itself and taking VEV, we have

〈0|Dac1
ρ (B(x))Gµρ

c1
(B(x))Dbc2

λ (B(x))Gνλ
c2

(B(x))|0〉
= g2〈0|q̄(x)γµtaq(x)q̄(x)γνtbq(x)|0〉. (29)

By means of (14)-(16), expanding the left hand side(LHS)
of the above equation and keeping the contribution of the
vacuum intermediate state [15], we obtain

〈0|B2|0〉3 − 11(N2
c − 1)

36Ncαs
〈0|G2|0〉〈0|B2|0〉

=
(N2

c − 1)3〈0|qq̄|0〉2
9πN4

c αs
, (30)

where
〈0|qq̄|0〉 =

∑
f

〈0|qf q̄f |0〉, (31)

The phenomenological vacuum expectation values of
〈0|qf q̄f |0〉 and 〈0|G2|0〉 are given as [14,17]

〈0|uū|0〉 = 〈0|dd̄|0〉
= 1.3〈0|ss̄|0〉 = −(250MeV )3, (32)

and
〈0|αs

π
G2|0〉 = (360MeV )4. (33)
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The effective coupling constant αs = g2/4π in (30) is
adopted as αs = 0.5. It is noteworthy that (30) is only
valid under the Lorentz gauge condition. Although the
”pairing” order parameter 〈0|B2|0〉 is clearly not gauge
invariant, its specified value in the Lorentz gauge can be
determined according to (30). Therefore, the physically
observable quantities in the following sections can be ex-
pressed via this specified value of 〈0|B2|0〉, which is equiv-
alent to that all descriptions are made in Lorentz gauge.
There are three real roots of 〈0|B2|0〉 in (30). The numer-
ical calculation shows that the magnitude of two roots
decreases as αs, and the third root increases as αs. Physi-
cally, increase of αs means the strengthening of nonpertur-
bative effect, thus only the third root is reasonable. When
αs = 0.5, we find

〈0|B2|0〉 = −(127MeV )2 (34)

which should not be omitted in (24)-(26). Equation (24)
yields

S = (206MeV )4. (35)

Thus, we obtain a workable formula of the non-local two-
gluon VEV as shown in (26) with 〈0|B2|0〉 of (34) and S
of (35).

3 Nonperturbative QCD corrections
to the quark-quark potential

Firstly, we briefly introduce the nonrelativistic reduction
method which is used to extract nonperturbative correc-
tions to perturbative QCD potentials. According to [18],
the reduction formula for the connected part of the S-
matrix element can be expressed as:

〈p′
1, p

′
2 out|p1, p2 in〉c = ψiψf (2π)4δ4(p1 + p2 − p′

1 − p′
2)

×Gtrunc(−p′
1,−p′

2; p1, p2)|p2
1=p′

1
2=m2

1;p
2
2=p′

2
2=m2

2
, (36)

where ψi and ψf are the wave functions of the initial and
final states respectively and Gtrunc is a truncated Green
function which contains the VEV of some local product of
quark and gluon fields. It is impossible in QCD to com-
pute the Green function exactly because of the complex
structure of the QCD vacuum, thus one has to introduce
some approximation. Generally, Wilson’s OPE method [7],
where nonzero vacuum matrix elements of composite op-
erators are used as a parameterization of long-distance
nonperturbative effects, is employed to extract the pertur-
bative part of the S-matrix element as well as its nonper-
turbative part arising from the nonzero quark and gluon
condensates. Therefore, we can use the method of unitary
expansion of the scattering operator and then make the
nonrelativistic reduction to obtain nonperturbative cor-
rections to the perturbative QCD potential.

The Feynman diagrams that will be used to evaluate
the nonperturbative correction to quark-quark interaction
are shown in Fig. 1. For the scattering of the two quarks
of different flavors, by using the obtained two-gluon VEV

Fig. 1a–d. The Feynman diagrams for the contributions of
the nonperturbative corrections to perturbative quark-quark
potential in one-gluon exchange approximation with the lowest
dimensional quark and gluon condensates

of (26), the contribution of the Feynman diagram 1(a) to
the S-matrix is

S1(a)(p1, p2; p′
1, p

′
2) = ig4[ψ̄−(p′

2)γ
µλ

a

2
ψ+(p2)]

×[ψ̄−(p′
1)γ

ν λ
b

2
ψ+(p1)]Daa′

µµ′(q)
∫
d4k

[
δ4(k)

〈0|B2|0|〉gρσ

4(N2
c − 1)

+
S

N2
c − 1

(
gρσglm − 2

5
gρlgσm

)
∂2

∂kl∂km
δ4(k)

]

×δdd′fa′cd

[
(2q + k)ρgµ′λ + (−q − 2k)µ′

gρλ

+(k − q)λgρµ′]
Dcc′

λλ′(q + k) × fc′b′d′
[
(2q + k)σgλ′ν′

+(−q + k)λ′
gν′σ + (−2k − q)ν′

gλ′σ
]
Db′b

ν′ν(q). (37)

According to the relation between the effective interaction
operator and scattering operator

V = iS (38)

Equation (37) can be rewritten as a relation between the
corresponding quark potential:

V1(a)(q) =
Nc4παs

N2
c − 1

( 〈0|B2|0|〉
q2

+
192S
5q4

)
V OGEP

qq (q), (39)

where V OGEP
qq (q) is the usual perturbative quark-quark

potential arising from the one-gluon exchange mechanism.
When using the center-of-mass frame in which

p1 = −p2 = p,p1
′ = −p2

′,
E′

1 = E1, E
′
2 = E2,

q = p1
′ − p1 = −(p2

′ − p2), q0 = 0, (40)
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one can easily obtain

V OGEP
qq (q) =

λa
1λ

a
2

4
4παs

{
1

|q|2 − (m1 +m2)2

8m2
1m

2
2

+
|p|2

m1m2|q|2 − 1
4m1m2|q|2

× [|q|2σ1 · σ2 − (q · σ1)(q · σ2)
]

+
i

4m1m2|q|2
[
(2 +

m2

m1
)σ1 + (2 +

m1

m2
)σ2

]

·(q × p)

}
(41)

which can be transformed into an expression in the coor-
dinate representation

UOGEP
qq (x) =

∫
d4q

(2π)4
exp(−iq · x)V OGEP

qq (q)

= δ(t)
λa

1λ
a
2

4
αs

{
1
|x| − π

m1m2

(
(m1 +m2)2

2m1m2

+
2
3
σ1 · σ2

)
δ(x) +

|p|2
m1m2|x| − 1

4m1m2|x|3

×
[

3
|x|2 (σ1 · x)(σ2 · x) − (σ1 · σ2)

]

− 1
4m1m2|x|3

[
(2 +

m2

m1
)σ1 + (2 +

m1

m2
)σ2

]

·(x × p)

}
, (42)

where δ(t) obviously indicates that the potential is an ef-
fective one describing the instantaneous interaction. Per-
forming Fourier transformation to V1(a)(q) of (39), we ob-
tain the contribution of the Feynman diagram 1(a) to
the quark-quark potential in the coordinate representa-
tion U1(a)(x),

U1(a)(x) = δ(t)
λa

1λ
a
2

4
πα2

s

× [
A3|x|3 +A1|x| +A−1|x|−1] , (43)

where

A3 =
32NcS

5(N2
c − 1)

(
1 +

|p|2
m1m2

)
, (44)

A1 =
48NcS

5(N2
c − 1)

(
1
m1

+
1
m2

)2

+
8NcS

5m1m2(N2
c − 1)

(8σ1 · σ2 − S12)

+
24NcS

5m1m2(N2
c − 1)

[(
2 +

m2

m1

)
σ1

+
(

2 +
m1

m2

)
σ2

]
· (x × p)

+
2Nc〈0|B2|0〉
N2

c − 1

(
1 +

|p|2
m1m2

)
, (45)

A−1 =
Nc〈0|B2|0〉
2(N2

c − 1)

(
1
m1

+
1
m2

)2

+
Nc〈0|B2|0〉

6(N2
c − 1)m1m2

S12 +
2Nc〈0|B2|0〉

3(N2
c − 1)m1m2

σ1 · σ2

+
Nc〈0|B2|0〉

2(N2
c − 1)m1m2

×
[(

2 +
m2

m1

)
σ1 +

(
2 +

m1

m2

)
σ2

]
· (x × p) (46)

with n = x/|x| and S12 = 3(σ1 · n)(σ2 · n) − σ1 · σ2.
In the fixed-point gauge of the vacuum gluon field,

Fig. 1b makes no contribution [9]. However, in the
present case, we use the two-gluon VEV with translational
invariance (26) which contains not only the derivative
term(second term in (26)), which still contributes nothing,
but also the 〈0|B2|0|〉 term(first term in (26)), which yields
non-zero contribution of the Feynman diagram 1(b) to the
effective potential. Similar to the calculation of Fig. 1a, the
contribution of the Feynman diagram 1(b) to the effective
potential is

U1(b)(x) = δ(t)
λa

1λ
a
2

4
πα2

s[B1|x| +B−1|x|−1] (47)

with

B1 = −3Nc〈0|B2|0〉
(N2

c − 1)

(
1 +

|p|2
m1m2

)
, (48)

B−1 = − Nc〈0|B2|0〉
(N2

c − 1)m1m2

{
3(m1 +m2)2

4m1m2
+
S12

4
+ σ1 · σ2

+
3
4

[(
2 +

m2

m1

)
σ1 +

(
2 +

m1

m2

)
σ2

]

·(x × p)

}
(49)

A nonzero value of B1 due to retaining the 〈0|B2|0〉 term
in (24) and (26) adds a linear term in the effective poten-
tial.

By means of the two-quark VEV [14], the contribu-
tion of the Feynman diagram 1(c) to the S-matrix can be
expressed as

S1(c)(p1, p2; p′
1, p

′
2) = −ig4[ψ̄−(p′

2)γ
ν λ

b
2

2
ψ+(p2)]

×[ψ̄−(p′
1)γ

µλ
a
1

2
ψ+(p1)]

×
∫
d4kδ4(k)〈0|q̄fqf |0〉

[
1

4Nc
+

mf

16Nc

× γτ ∂

∂kτ

]
γρ
λa′

f

2
S(q + k)γσ

λb′
f

2
Daa′

µρ (q)Dbb′
νσ (q), (50)

where we have retained the next-to-leading-order term in
the full coefficient of 〈q̄q〉 component of the nonperturba-
tive two-quark VEV [14]. There exists a similar expression
for Fig. 1d. It is easy to find that the contributions of the
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Feynman diagrams 1(c) and 1(d) to the effective poten-
tial are the same. Therefore, we can extract the effective
potential for the scattering of two quarks of different fla-
vors as shown in Fig. 1c and Fig. 1d in the coordinate
representation

U1(c)(x) = U1(d)(x)

= δ(t)
λa

1λ
a
2

4
πα2

s

[
C1|x| + C−1|x|−1

+
∑

f

(
C̃

(f)
0 + C̃

(f)
−1 |x|−1

)
e−mf |x|

]
, (51)

where

C1 =
(

1 +
|p|2
m1m2

) ∑
f

〈0|q̄fqf |0〉
Ncmf

, (52)

C−1 =
1

4Ncm1m2

∑
f

〈0|q̄fqf |0〉
mf

×
{

(m1 +m2)2

m1m2
+
S12

3
+

4
3
σ1 · σ2 (53)

+
[(

2 +
m2

m1

)
σ1 +

(
2 +

m1

m2

)
σ2

]
· (x × p)

}

C̃
(f)
0 =

2
Nc

〈0|q̄fqf |0〉
mf

[
1

2mf

(
1 +

|p|2
m1m2

)

+
mf (m1 +m2)2

16m2
1m

2
2

− mf

24m1m2
S12

+
mf

12m1m2
σ1 · σ2

]
(54)

and

C̃
(f)
−1 = − 2

Nc

〈0|q̄fqf |0〉
mf

{
(m1 +m2)2

8m2
1m

2
2

+
S12

6m1m2

+
1

6m1m2
σ1 · σ2 − 3

24m1m2

×
[(

2 +
m2

m1

)
σ1 +

(
2 +

m1

m2

)
σ2

]
·(x × p)} (55)

The total quark-quark effective potential is finally ob-
tained by summing up the contributions of all the cor-
responding diagrams including perturbative and nonper-
turbative ones:

Uqq(x) = UOGEP
qq (x) + UNP

qq (x) (56)

where UNP
qq (x), the nonperturbative correction to the per-

turbative quark-quark due to the quark and gluon con-
densate, can be expressed as

UNP
qq (x) = U1(a)(x) + U1(b)(x) + U1(c)(x) + U1(d)(x)

= δ(t)
λa

1λ
a
2

4
πα2

s

[
A3|x|3 + (A1 +B1 + 2C1) |x|

Fig. 2a–d. The Feynman diagrams for the contributions of
the nonperturbative corrections to perturbative qq̄-pair anni-
hilation potential in one-gluon exchange approximation with
the lowest dimensional quark and gluon condensates

+ (A−1 +B−1 + 2C−1) |x|−1

+2
∑

f

(
C̃

(f)
0 + C̃

(f)
−1 |x|−1

)
e−mf |x|


 . (57)

Formally, (56) holds not only for the qq-, but also for the
qq̄- and q̄q̄-interactions. Note, however, that the color gen-
erators for an antiquark are given by −λT , i.e.,

UDirect
qq̄ (x) = Uqq(x)|λa

1λa
2→−λa

1 (λa
2 )T . (58)

and

Uq̄q̄(x) = Uqq(x)|λa
1λa

2→(λa
1 )T (λa

2 )T . (59)

For an interaction between a quark and an antiquark,
if the quark and antiquark are of the same kind of quark
fields, then not only the direct scattering but also the an-
nihilation mechanism should be taken into account. The
detail discussion is given in the following section.

4 Nonperturbative QCD corrections
to the quark-antiquark potential

In the last section, the direct interaction potential between
the quark and antiquark was given. When the quark and
antiquark have the same kind of flavor, then the annihila-
tion of a quark and an antiquark is possible. The annihila-
tion diagrams including the perturbative and nonpertur-
bative ones shown in Fig. 2 should be further considered.
We can obtain the contributions of these Feynman dia-
grams to the quark-antiquark annihilation potential by
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means of the same procedure as above. Taking Fig. 2a as
an example, the S-matrix for this diagram can be obtained
by making the substitutions

ψ̄−(p′
2) → ψ̄+(p2), ψ+(p2) → ψ−(p′

2),m1 = m2 = m (60)

in (37). In the calculation of color part and spin part in
the S-matrix for Fig. 2, it is valuable to note that

N2−1∑
a=1

(λa)βα(λa)α′β′ = − 1
N

N2−1∑
a=1

(λa)α′α(λa)ββ′

+
2(N2 − 1)

N2 δα′αδββ′ (61)

for SU(N) generators λa(a = 1, 2, · · · , N2 − 1), with N =
3, 2 for the color and spin generators, respectively. Thus
the effective potential for Fig. 2a can be obtained directly
as follows,

V2(a)(q) =
Nc4παs

N2
c − 1

( 〈0|B2|0|〉
(p1 + p2)2

+
192S

5(p1 + p2)4

)
×V Ann

qq̄ (q), (62)

where

V Ann
qq̄ (q) =

4παs

(p1 + p2)2

[
(λ1 − λT

2 )2

8Nc

]

×
[
(1 − τ1 · τ2)

2

] {
(σ1 + σ2)2

4

×
[
1 − 1

6m2 (q 2 + q ′2)
]

− 1
2m2

[
(σ1 · q)(σ2 · q) + (σ1 · q ′)(σ2 · q ′)

−1
3
σ1 · σ2(q 2 + q ′2)

]}
. (63)

where, q and q ′ are relative momenta between quarks
and antiquarks in the initial and final states respectively.
The isospin factor (1 − τ1 · τ2)/2 in (63) is introduced by
considering the fact that the potential has a nonvanishing
value only for isospin T = 0 state of a quark and antiquark
pair, which corresponds to the gluon quantum number.
Performing Fourier transformation to V2(a)(q) yields

U2(a)(x) =
Nc4παs

N2
c − 1

( 〈0|B2|0|〉
4m2 +

12S
5m4

)
UAnn

qq̄ (x), (64)

where UAnn
qq̄ (x), the perturbative qq̄ pair-annihilation po-

tential in coordinate representation, is,

UAnn
qq̄ (x) = δ(t)

αs

4
π

16Ncm2 (λ1 − λT
2 )2(1 − τ1 · τ2)

×
{

(σ1 + σ2)2
(

1 − 1
3m2 ∇2

)
δ(x)

− 4
m2 [(σ1 · ∇)(σ2 · ∇)

−1
3
σ1 · σ2∇2

]
δ(x)

}
. (65)

The nonperturbative contributions of Fig. 2b–d may also
be obtained by means of the same procedure as above.
The total qq̄-pair annihilation potential can be obtained
by summing up the contributions of all diagrams includ-
ing nonperturbative ones in Fig. 2 and the corresponding
perturbative one,

U
Ann(Total)
qq̄ (x) = UAnn

qq̄ (x) + U
Ann(NP)
qq̄ (x) (66)

where

U
Ann(NP)
qq̄ (x) =

παs

m2

{
Nc

N2
c − 1

[
〈0|B2|0〉 +

48S
5m2

]

+
3Nc〈0|B2|0〉
2(N2

c − 1)

+
1
Nc

∑
f

mf 〈0|q̄fqf |0〉
(4m2 −m2

f )2
(8m2 −m2

f )




×UAnn
qq̄ (x). (67)

Therefore, the effective potential between a quark and an
antiquark of the same flavor may be expressed as the sum-
mation of the direct and annihilation potentials:

Uqq̄ of the same flavor(x) = UDirect
qq̄ (x)

+UAnn(Total)
qq̄ (x) (68)

5 Nonperturbative QCD corrections
to the qq̄ pair-excitation potential

Now, we turn to the nonperturbative QCD corrections to
qq̄ pair- excitation potential. By means of the same pro-
cedure as the above sections, we can calculate the contri-
bution of Fig. 3 to the effective potential. The result for
Fig. 3a reads

V3(a)(q) =
Nc

(N2
c − 1)

4παs

[ 〈0|B2|0〉
q2

+
192S
5q4

]
×V q→qqq̄(q), (69)

where V q→qqq̄(q), the usual perturbative quark excitation
potential in the one-gluon exchange approximation, is [19]

V q→qqq̄(q) =
λa

1λ
a
2

4
4παs

1
q2

[
1
2

(
1
m1

+
1
m2

)
q · σ2

− i

2m1
q · (σ1 × σ2) +

p1 · σ2

m1

]
(70)

with q = p ′
1 −p1. As suggested in [19], we adopt two dif-

ferent approximations, i.e., for q2 = ω2
q −q 2, ωq = 0 (case

A), and ωq = 2m2 with q ' 0 (case B). From the Fourier
transformation, the expression for the transition potential
(70) in the coordinate representation can be written as

U (A)q→qqq̄(x) = −δ(t)iαs
λa

1λ
a
2

4
1

2|x|
{[(

1
m1

+
1
m2

)
σ2

− i(σ1 × σ2)
m1

]
· x
|x|2 − 2iσ2 · p1

m1

}
, (71)
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and

U (B)q→qqq̄(x) = − iδ(t)
2m2

2

λa
1λ

a
2

4
παs

{
∇x ·

[
σ2

m1
+
σ2

m2

− i(σ1 × σ2)
m1

]
δ(x) +

2iσ2 · p1

m1
δ(x)

}
, (72)

in case A and case B, respectively. In case A, the expres-
sion for (69) in the coordinate representation is

U
(A)
3(a)(x) = δ(t)

λa
1λ

a
2

4
4πα2

s[D3|x|3 +D2|x|2

+D1|x| +D0], (73)

with

D3 = − 8NcS

5(N2
c − 1)m1

σ2 · p1, (74)

D2 =
12NcS

5(N2
c − 1)

[
n · (σ1 × σ2)

m1

+i(
1
m1

+
1
m2

)(σ2 · n)
]
, (75)

D1 = − Nc〈0|B2|0〉
2(N2

c − 1)m1
σ2 · p1, (76)

and

D0 =
Nc〈0|B2|0〉
4(N2

c − 1)

[
n · (σ1 × σ2)

m1

+i(
1
m1

+
1
m2

)(σ2 · n)
]
. (77)

In case B, one can easily obtain

U
(B)
3(a)(x) =

Ncπαs

m2
2(N2

c − 1)

(
〈0|B2|0〉 +

48S
5m2

2

)
×U (B)q→qqq̄(x). (78)

Similarly, the potential for Fig. 3b can also be ex-
pressed in two cases as follows,

U
(A)
3(b)(x) = δ(t)

λa
1λ

a
2

4
4πα2

s[E1|x| + E0], (79)

in case A, with

E1 = −3Nc〈0|B2|0〉
4(N2

c − 1)
σ2 · p1

m1
, (80)

and

E0 =
3Nc〈0|B2|0〉
4(N2

c − 1)

[
n · (σ1 × σ2)

2m1

+
i

2
(

1
m1

+
1
m2

)(σ1 · n)
]
. (81)

Fig. 3a–d. The Feynman diagrams for the contributions of the
nonperturbative corrections to perturbative qq̄-pair excitation
potential in one-gluon exchange approximation with the lowest
dimensional quark and gluon condensates

In case B,

U
(B)
3(b)(x) =

3Nc〈0|B2|0〉
2(N2

c − 1)m2
2
παsV

(B)q→qqq̄(x). (82)

The potential for Fig. 3c and that for Fig. 3d are the same,
and turn out to be

U
(A)
3(c)(x) = U

(A)
3(d)(x)

= δ(t)
λa

1λ
a
2

4
4πα2

s

×

F1|x| + F0 +

∑
f

F̃
(f)
0 e−mf |x|


 , (83)

in case A, with

F1 =
p1 · σ2

4Ncm1

∑
f

〈0|q̄fqf |0〉
mf

, (84)

F0 =
i

8Nc

∑
f

〈0|q̄fqf |0〉
mf

[
i

m1
n · (σ1 × σ2)

−
(

1
m1

+
1
m2

)
(n · σ2)

]
, (85)

and

F̃
(f)
0 =

p1 · σ2

8Ncm1

〈0|q̄fqf |0〉
m2

f

− i

16Nc

〈0|q̄fqf |0〉
mf

[
i

m1
n · (σ1 × σ2)

− (
1
m1

+
1
m2

)(n · σ2)
]
. (86)
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In case B,

U
(B)
3(c)(x) = U

(B)
3(d)(x)

=
παs

2Ncm2
2

∑
f

mf 〈0|q̄fqf |0〉
(4m2

2 −m2
f )

×
[
1 +

m2
f

2(4m2
2 −m2

f )

]
U (B)q→qqq̄(x). (87)

Therefore, the total transition potential in case A and case
B are

U
(A/B)q→qqq̄
Total (x) = U (A/B)q→qqq̄(x)

+U (A/B)q→qqq̄(NP)(x), (88)

U (A/B)q→qqq̄(NP)(x), the nonperturbative corrections to
the perturbative qq̄-pair excitation potential from all dia-
grams shown in Fig. 3 are

U (A)q→qqq̄(NP)(x) = U
(A)
3(a) + U

(A)
3(b) + U

(A)
3(c) + U

(A)
3(d)

= δ(t)
λa

1λ
a
2

4
4πα2

s

[
D3|x|3 +D2|x|2

+(D1 + E1 + 2F1)|x| + (D0 + E0 + 2F0)

+2
∑

f

F̃
(f)
0 e−mf |x|

]
, (89)

in case A, and

U (B)q→qqq̄(NP)(x) = U
(B)
3(a) + U

(B)
3(b) + U

(B)
3(c) + U

(B)
3(d)

=
παs

m2
2

{
Nc

(N2
c − 1)

(
〈0|B2|0〉 +

48S
5m2

2

)
+

3Nc〈0|B2|0〉
2(N2

c − 1)

+
1
Nc

∑
f

mf 〈0|q̄fqf |0〉
(4m2

2 −m2
f )

[
1 +

m2
f

2(4m2
2 −m2

f )

]


×U (B)q→qqq̄(x). (90)

in case B.

6 Discussion and summary

The non-local two-gluon VEV is essential in the nonper-
turbative calculation. However, this VEV in the fixed-
point gauge violates the translational invariance. We gave
in Sect. 2 the non-local two-gluon VEV with translational
invariance in Lorentz gauge. In order to include the non-
perturbative corrections in a more self-consistent way in
the nonrelativistic potential reduction, By using the ob-
tained two-gluon VEV, the quark-quark, qq̄ pair-annihi-
lation and excitation-type potentials are presented with
nonperturbative corrections.

Furthermore, some new features of the resultant quark-
quark potential appear: A linear term which can play a
role of the regular confinement potential comes from both

quark condensate and the gluon condensate corrections to
the gluon propagators; a cubic term |x|3 results only from
the nonperturbative gluon propagator with the gluon con-
densate modification; A Yukawa-type term |x|−1e−mf |x|
which may somewhat provide an interaction at longer
range arises form the nonzero quark condensate; a
Coulomb term |x|−1 comes from the nonvanishing
〈0|B2|0〉 and quark condensate. In the qq̄ excitation po-
tential, the linear, square and cubic terms also appear in
the case of ωq = 0 due to the nonzero quark and gluon
condensates.

It is noteworthy that the framework of the nonper-
turbative calculation is an extrapolatation from short dis-
tances where perturbative QCD is reliable. Therefore, the
nonperturbative correction can not be expected to include
as much as a purly phenomenological ansatz. But, it does
enrich our understanding of hadronic structure and shed
light on the underlying mechanism which determines how
quarks are bound into hadrons.

As an extension of this work, we will verify whether
the potentials obtained here can be used to improve the
hadronic spectra and hadronic properties of J/Ψ and Υ
families. Furthermore, the nonperturbative corrections are
comparable with those from perturbative closed-loop as
shown by Gupta et al. [21], Fulcher [22] and Pantaleone
et al. [23] since these two kinds of corrections are in the
same order of αs. Therefore, in a complete analysis, not
only perturbative closed-loop contributions, but also non-
perturbative corrections presented in this paper should be
taken into account.

Physically relevant results, such as the effective quark-
quark interaction potential, should be gauge-independent.
The difference between the present result of quark-quark
interaction and that of [9] indicates that there are still
gauge issues to be clarified. For this reason, we should
fulfill the construction of description in Lorentz gauge by
including the ghost propagators and ghost condensates as
well as the 〈B2〉 condensates according to the Slavnov-
Taylor identities (STI) [24]. We hope that the nonper-
turbative correction to the quark potential can be ob-
tained with the translational invariance as well as gauge-
independence. Further studies along this direction are in
progress.
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